What is pteronyssinus allergy

  • Dust mite questions and answers, HouseDustMite.com, henta 26. februar 2018 


Kjelder[endre | endre wikiteksten]

Stewart GA, Kollinger MR, King CM, Thompson PJ. A comparative study of three serine proteases from Dermatophagoides pteronyssinus and D. farinae. Allergy 1994;49(7):553-60

Thomas WR, Smith WA, Hales BJ. The allergenic specificities of the home dust mite. Chang Gung Med J 2004;27(8):563-9.

Li CS, Hsu CW, Chua KY, Hsieh KH, Lin RH. Environmental distribution of home dust mite allergen (Der p 5).

J Allergy Clin Immunol 1996;97(3):857-9

Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S, Ono K. Immunochemical characterization of recombinant and native tropomyosins as a new allergen from the home dust mite.
J Allergy Clin Immunol 1995;96(1):74-83

Tsai LC, Chao PL, Shen HD, Tang RB, Chang TC, Chang ZN, Hung MW, Lee BL, Chua KY. Isolation and characterization of a novel 98- kd Dermatophagoides farinae mite allergen. J Allergy Clin Immunol 1998;102(2):295-303

Fujikawa A, Uchida K, Yanagidani A, Kawamoto S, Aki T, Shigeta S, Wada T, Suzuki O, Jyo T, Ono K. Altered antigenicity of M-177, a 177-kDa allergen from the home dust mite Dermatophagoides farinae, in stored extract.

Clin Exp Allergy 1998;28(12):1549-58

Epton MJ, Smith W, Hales BJ, Hazell L, Thompson PJ, Thomas WR. Non-allergenic antigen in allergic sensitization: responses to the mite ferritin heavy chain antigen by allergic and non-allergic subjects. Clin Exp Allergy 2002;32(9):1341-7

Gehring U, Brunekreef B, Fahlbusch B, Wichmann HE, Heinrich J; the INGA study group. Are home dust mite allergen levels influenced by freezing winter weather? Allergy 2005;60(8):1079-82 King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA. The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite Dermatophagoides pteronyssinus.

J Allergy Clin Immunol 1996;98:739-47

Li CS, Hsu CW, Lin RH. Home dust mite allergens (Der p I and Der p V) within domestic environments of atopic and control children. Arch Environ Health 1997;52(3):208-12 Trakultivakorn M, Nuglor T. Sensitization to Dermatophagoides pteronyssinus and Blomia tropicalis extracts and recombinant mite allergens in atopic Thai patients. Asian Pac J Allergy Immunol 2002;20(4):217-21

Hales BJ, Shen HD, Thomas WR. Crossreactivity of T-cell responses to Dermatophagoides pteronyssinus and D.

farinae. Studies with group 1 and 7 allergens. Clin Exp Allergy 2000;30(7):927-33 Takai T, Kato T, Yasueda H, Okumura K, Ogawa H. Analysis of the structure and allergenicity of recombinant pro- and mature Der p 1 and Der f 1: Major conformational IgE epitopes blocked by prodomains. J Allergy Clin Immunol 2005;115(3):555-63

Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, Spangfort MD, Gajhede M, Lund K. The crystal structure of recombinant proDer p 1, a major home dust mite proteolytic allergen. J Immunol 2005;175(6):3835-45

de HS, Stura E, VanderElst L, Carlier V, Jacquemin M, Saint-Remy JM.

Threedimensional structure and IgE-binding properties of mature fully athletic Der p 1, a clinically relevant major allergen. J Allergy Clin Immunol 2006;117(3):571-576

Guler N, Kirerleri E, Tamay Z, Ones U. Atopy patch testing in children with asthma and rhinitis symptoms allergic to home dust mite. Pediatr Allergy Immunol 2006;17(5):346-50

Garcia-Gonzalez JJ, Vega-Chicote JM, Rico P, del Prado JM, et al. Prevalence of atopy in students from Malaga, Spain. Ann Allergy Asthma Immunol 1998;80(3):237-44

Tsai JJ, Chen WC. Diverse age of asthmatic patients affected by diverse aeroallergens.

[Chinese] J Microbiol Immunol Infect 1999;32(4):283-8

Sanchez-Borges M, Capriles-Hulett A, Fernandez-Caldas E, et al. Mitecontaminated foods as a cause of anaphylaxis. J Allergy Clin Immunol 1997;99(6 Pt 1):738-43



    July 1999 (last update 31/09/99)

    Crustacea / Mollusks— Egg / Milk — Epidermals / Animal Proteins — Fish / Fowl / Meat — Home Dust / Mites — Insects / Venoms — Mushroom / Mould / Yeast / Parasites — Fruit / Vegetables / Latex — Grains / Grass Pollen / Tree Pollen — Legumes — Seeds / Nuts — Spice — Chemicals / Drugs / Food Additives — Environmental Contaminants — General Topics / Other
    Crustacea / Mollusks [top]
    Egg / Milk [top]
    1. Restani P, Gaiaschi A, Plebani A, Beretta B, Cavagni G, Fiocchi A, Poiesi C, Velona T, Ugazio AG, Galli CL (1999) Cross- reactivity between milk proteins from diverse animal species Clin Exp Allergy 29:997-1004
    2. Ylitalo L, Mákinen-Kiljunen S, Turjanmaa K, Palosuo T, Reunala T (1999) Cow’s milk casein, a hidden allergen in natural rubber latex gloves J Allergy Clin Immunol 104:177-80
    Epidermals / Animal Proteins [top]
    1. Kauppinen J, Zeiler T, Rautiainen J, Rytkönen-Nissinen M, Taivainen A, Mäntyjärvi R, Virtanen T (1999) Mutant derivatives of the main respiratory allergen of cow are less allergenic than the intact molecule Clin Exp Allergy 29:989-96
    2. McSharry C, MacLeod K, McGregor S, Speekenbrink ABJ, Sriram S, Boyd F, Boyd G (1999) Mucosal immunity in extrinsic allergic alveolitis: salivary immunoglobulins and antibody against inhaled avian antigens among pigeon breeders Clin Exp Allergy 29:957-64
    3. Plaschke P, Janson C, Norrman E, Bjórnsson E, Ellbjár S, Járvholm B (1999) Association between atopic sensitization and asthma and bronchial hyperresponsiveness in Swedish adults: Pets, and not mites, are the most significant allergens J Allergy Clin Immunol 104:58-65
    Fish / Fowl / Meat [top]
    1. Kelso JM, Cockrell GE, Helm RM, Burks AW (1999) Common allergens in avian meats J Allergy Clin Immunol 104:202-4
    House Dust / Mites [top]
    1. Engelhart ST, Wilmes-Link M, Gilges S, Exner M, Kramer MH (1999) Exposure of submarine personnel to home dust mite allergens J Allergy Clin Immunol 104:242
    2. Holm L, van Hage-Hamsten M, Öhman S, Scheynius A (1999) Sensitization to allergens of house-duste mite in adults with atopic dermatitis in a freezing temperate region Allergy 54:708-15
    3. Warner A, Boström S, Möller C, Kjellman NIM (1999) Mite fauna in the home and sensitivity to house-dust and storage mites Allergy 54:681-90
    4. Nakada M, Nishizaki K, Yoshino T, Okano M, Yamamoto T, Masuda Y, Ohta N, Akagi T (1999) CD80 (B7-1) and CD86 (B7-2) antigens on home dust mite-specific T cells in atopic disease function through T-T cell interactions J Allergy Clin Immunol 104:222-7
    5. Marcos Bravo C, Luna Ortiz I, Outon Soto A, Gonzalez Vazquez R (1999) Allergy to storage mites Allergy 54:769
    6. Gutgesell C, Seubert A, Junghans V, Neumann C (1999) Inverse correlation of domestic exposure to Dermatophagoides pteronyssinus antigen patch test reactivity in patients with atopic dermatitis Clin Exp Allergy 29:920-5
    7. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions J Clin Invest 104 (1):123-133
    8. Puerta L, Kennedy MW, Jiménez S, Caraballo L (1999) Structural and Ligand Binding Analysis of Recombinant Blo t 13 Allergen from Blomia tropicalis Mite, a Fatty Acid Binding Protein Int Arch Allergy Immunol119:181-4
    9. Chew FT, Yi FC, Chua KY, Fernandez-Caldas E, Arruda LK, Chapman MD, Lee BW (1999) Allergenic differences between the domestic mites Blomia tropicalis and Dermatophagoides pteronyssinus Clin Exp Allergy 29:982-8
    10. Yu CK, Shieh CM, Lei HY (1999) Repeated intratracheal inoculation of home dust mite (Dermatophagoides farinae) induces pulmonary eosinophilic inflammation and IgE antibody production in mice J Allergy Clin Immunol 104:228-36
    Insects / Venoms [top]
    1. Irsch, J, König C, Löhndorf A, Tesch H, Krieg T, Merk H, Radbruch A, Hunzelmann N (1999) The frequency of phospholipase A2 binding of basophilic granulocytes does not decrease during bee- venom- specific immunotherapy Allergy 54:742-7
    2. Jung K, Lehmann B, Linse R (1999) Role of immunoblotting for diagnosis of insect venom allergy Allergologie 22:426-32 (in German)
    Mushroom / Mould / Yeast / Parasites [top]
    1. Aden E, Weber B, Bossert J, Teppke M, Candid E, Wahl R, Fiebig H, Cromwell O (1999) Standardization of Alternaria alternata: Extraction and quantification of Alt a 1 by using an mAb-based 2-site binding assay J Allergy Clin Immunol 104:128-35
    2. Doekes G, Kamminga N, Helwegen L, Heederik D (1999) Occupational IgE sensitisation to phytase, a phosphatase derived from Aspergillus niger Occup Environ Med 56(7):454-9
    3. Ricaurté KK, Greenberger PA, Fullerton DA (1999) Allergic bronchopulmonary aspergillosis with multiple Streptococcus pneumoniae lung abscesses: An unusual initial case presentation J Allergy Clin Immunol 104:238-9
    Fruit / Vegetables / Latex [top]
    1. Chardin H, Desvaux FX, Mayer C, Sénéchal H, Peltre G (1999) Protein and Allergen Analysis of Latex Mattresses Int Arch Allergy Immunol119:239-46
    2. Cheng L, Lee D (1999) Review of latex allergy J Am Board Fam Pract 12(4):285-92
    Grains / Grass Pollen / Tree Pollen [top]
    1. Brewczynski PZ, Kroon AM (1999) Efficacy and safety of immunotherapy with modified grasspollen allergens.

      Results of a placebo-controlled study Allergologie 22:411-20 (in German)

    2. Klimek L, Reichenbach M, Mann W (1999) Natural pollen exposition influences sICAM-1 in nasal secretions in birch pollen-allergic rhinitis Allergologie 22:397-403 (in German)
    3. Sone T, Morikubo K, Shimizu K, Komiyama N, Tsunoo H, Kino K (1999) Peptide Specificity, HLA Class II Restriction, and T-Cell Subsets of the T-Cell Clones Specific to Either Weep j 1 or Weep j 2, the Major Allergens of Japanese Cedar (Cryptomeria japonica) Pollen Int Arch Allergy Immunol 119:185-96
    4. Lovborg U, Baker PJ, Taylor DJM, Yin P, Tovey ER (1999) Subtribe- specific monoclonal antibodies to Lolium perenneClin Exp Allergy 29:973-81
    5. Hänninen AR, Mikkola JH, Kalkkinen N, Turjanmaa K, Ylitalo L, Reunala T, Palosuo T (1999) Increased allergen production in turnip (Brassica rapa) by treatments activating defense mechanisms J Allergy Clin Immunol 104:194-201
    6. Würtzen PA, Wissenbach M, Ipsen H, Bufe A, Arnved J, van Neerven RJJ (1999) Highly heterogeneous Phl p 5-specific T cells from patients with allergic rhinitis differentially recognize recombinant Phl p 5 isoallergens J Allergy Clin Immunol 104:115-22
    Legumes [top]
    1. Burks W, Bannon GA, Sicherer S, Sampson HA (1999) Peanut-Induced Anaphylactic Reactions [review]Int Arch Allergy Immunol 119:165-72
    2. Hill DJ, Heine RG, Cameron DJS, Francis DEM, Bines JE (1999) The natural history of intolerance to soy and extensively hydrolyzed formula in infants with multiple food protein intoleranceJ Pediatr 135:118-21
    3. Lallès JP, Tukur HM, Salgado P, Mills ENC , Morgan MRA, Quillien L, Levieux D, Toullec R (1999) Immunochemical Studies on Gastric and Intestinal Digestion of Soybean Glycinin and beta- Conglycininin Vivo J Agric Food Chem 47:2797-806
    4. Sicherer SH, Furlong TJ, De Simone J, Sampson HA (1999) Self-reported allergic reactions to peanut on commercial airliners J Allergy Clin Immunol 104:186-9
    Seeds / Nuts [top]
    Spice [top]
    1. Beyer AV, Gall H, Peter RU (1999) Immediate-type hypersensitivity to vanilla Allergologie 22:433-6 (in German)
    Chemicals / Drugs / Food Additives [top]
    1. Alfaya T, Pulido Z, Gonzalez-Mancebo E, Cuevas M, Quirce S, de la Hoz B (1999) Anaphylaxis to trimethoprim Allergy 54:766
    2. Brockow K, Vieluf D, Púschel K, Grosch J, Ring J (1999) Increased postmortem serum mast cell tryptase in a fatal anaphylactoid reaction to nonionic radiocontrast medium J Allergy Clin Immunol 104:237
    3. von Greyerz S, Burkhart C, Pichler WJ (1999) Molecular Basis of Drug Recognition by Specific T-Cell Receptors [review] Int Arch Allergy Immunol119:173-80
    4. Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H (1999) Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma Clin Exp Allergy 29:950-6
    5. Gücüyener K, Türktas I, Serdaroglu A, Ezgü FS (1999) Suspected allergy to lamotrigine Allergy 54:767
    6. Antico A, Soana R (1999) Chronic allergic-like dermatopathies in nickel-sensitive patients.

      Results of dietary restrictions and challenge with nickel salts Allergy Asthma Proc 20(4):235-42

    7. Szczeklik A, Stevenson DD (1999) Aspirin-induced asthma: Advances in pathogenesis and management [review] J Allergy Clin Immunol 104:5-13
    8. Wicki J, Deluze C, Cirafici L, Desmeules J (1999) Anaphylactic shock induced by intraurethral use of chlorhexidine Allergy 54:768
    Environmental Contaminants [top]
    General Topics / Other [top]
    1. Gauvreau GM, Watson RM, Rerecich TJ, Baswick E, Inman MD, O’Byrne PM (1999) Repeatability of allergen-induced airway inflammation J Allergy Clin Immunol 104:66-71
    2. Kimber I, Gerberick GF, Basketter DA (1999) Thresholds in contact sensitization: theoretical and practical considerations Food Chem Toxicol 37:553-560
    3. Tassabehji M, Römer U, Hauswald B, Hüttenbrink KB (1999) Determination of provocation threshold of the nasal provocation test (NPT) in patients with allergic rhinitis Allergologie 22:404-10 (in German)
    4. Piacentini GL, Peterson C, Peroni DG, Bodini A, Boner AL (1999) Allergen avoidance at high altitude and urinary eosinophil protein X J Allergy Clin Immunol 104:243-4
    5. Ludolph-Hauser D, Przybilla B (1999) Mast cell tryptase and chymase – mediators in skin diseases [review] Allergologie 22:421-5 (in German)
    6. Miadonna A, Milazzo N, Gibelli S, Salmaso C, Lorini M, Tedeschi A (1999) Nasal response to a single antigen challenge in patients with allergic rhinitis — inflammatory cell recruitment persists up to 48 hours Clin Exp Allergy 29:941-9
    7. Shadick NA, Liang MH, Partridge AJ, Bingham C, Wright E, Fossel AH, Sheffer AL (1999) The natural history of exercise-induced anaphylaxis: Survey results from a 10-year follow-up study J Allergy Clin Immunol 104:123-7
    8. Shimada Y, Sato S, Hasegawa M, Tedder TF, Takehara K (1999) Elevated serum L-selectin levels and abnormal regulation of L-selectin expression on leukocytes in atopic dermatitis: Soluble L-selectin levels indicate disease severity J Allergy Clin Immunol 104:163-8
    9. Ohta K, Yamashita N (1999) Apoptosis of eosinophils and lymphocytes in allergic inflammation J Allergy Clin Immunol 104:14-21
    10. Sherrill D, Stein R, Kurzius-Spencer M, Martinez F (1999) On early sensitization to allergens and development of respiratory symptoms Clin Exp Allergy 29:905-11
    11. Ferrer M, Nakazawa K, Kaplan AP (1999) Complement dependence of histamine release in chronic urticaria J Allergy Clin Immunol 104:169-72
    12. Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H (1999) The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT) [review] Clin Exp Allergy 29:896-904
    13. Nusam D, Geva A, Kalderon I, Cohen S (1999) Intravaginal desensitization to seminal fluid Allergy 54:765
    14. ErbKJ (1999) Atopic disorders: a default pathway in the absence of infection?

      [Viewpoint] Immunol Today 20:317-22

    15. Grouhi M, Alshehri M, Hummel D, Roifman CM (1999) Anaphylaxis and epinephrine auto-injector training: Who will teach the teachers? J Allergy Clin Immunol 104:190-3
    16. Kodama A, Horikawa T, Suzuki T, Ajiki W, Takashima T, Harada S, Ichihashi M (1999) Effect of stress on atopic dermatitis: Investigation in patients after the Grand Hanshin Earthquake J Allergy Clin Immunol 104:173-6
    17. Hauk PJ, Wenzel SE, Trumble AE, Szefler SJ, Leung DYM (1999) Increased T-cell receptor V beta 8+ T cells in bronchoalveolar lavage fluid of subjects with poorly controlled asthma: A potential role for microbial superantigens J Allergy Clin Immunol 104:37-45
    18. Rohrbach M, Frey U, Kraemer R, Liechti-Gallati S (1999) A variant in the gene for GM-CSF, I117T, is associated with atopic asthma in a Swiss population of asthmatic children J Allergy Clin Immunol 104:247-
    19. Becker EL (1999) Elements of the history of our present concepts of anaphylaxis, hay fever and asthma [review] Clin Exp Allergy 29:875-95
    20. Sánchez-Guerrero IM, Escudero AI, Bartolomé B, Palacios R (1999) Occupational allergy caused by carnation (Dianthus caryophyllus) J Allergy Clin Immunol 104:181-5
    21. Sherrill DL, Stein R, Halonen M, Holberg CJ, Wright A, Martinez FD (1999) Total serum IgE and its association with asthma symptoms and allergic sensitization among children J Allergy Clin Immunol 104:28-36
    22. Rabinovitch N, Gelfand EW, Leung DYM (1999) The role of immunoglobulin therapy in allergic diseases Allergy 54:662-8
    23. Borger P, Jonker GJ, Vellenga E, Postma DS, De Monchy JGR, Kaufmann HF (1999) Allergen challenge primes for IL-5 mRNA production and abrogates beta- adrenergic function in peripheral blood T lymphocytes from asthmatics Clin Exp Allergy 29:933-40
    24. Rinn K, Schiffman K, Otero HO, Disis ML (1999) Antigen-specific recall urticaria to a peptide-based vaccine J Allergy Clin Immunol 104:240-1
    25. Jung T, Moessner R, Dieckhoff K, Heidrich S, Neumann C (1999) Mechanisms of deficient interferon- gamma production in atopic diseases Clin Exp Allergy 29:912-19
    26. Wiedermann U, Jahn-Schmid B, Lindblad M, Rask C, Holmgren J, Kraft D, Ebner C (1999) Suppressive versus stimulatory effects of allergen/cholera toxoid (CTB) conjugates depending on the nature of the allergen in a murine model of type I allergy Int Immunol 11:1131-8

    [top]


    copyright © 1999 by matthias besler — ONLINE PUBLISHER
    e-mail:[email protected]: www.food-allergens.de

    After informed consent, subjects will be randomly assigned to ILIT group or placebo group in double-blind manner.

    In both group, causal allergen or placebo will be injected into inguinal lymph node through guidance by ultrasonography three times with 4-week interval. In ILIT group, initial dose of allergen will be 1,000-fold diluted solution from maximal concentration of allergen extract for subcutaneous immunotherapy (Tyrosine S, Allergy Therapeutic, West Sussex, UK) in volume of 0.1ml. If skin is highly reactive in skin prick test, the initial dose will be 10-fold dilution from maximal concentration where diameter of wheal is less than that of histamine.

    After the first dose, allergen concentration will be escalated 3-fold at second dose, and 10-fold at third dose if there are no (or mild) local or systemic hypersensitivity reaction. The allergen concentration will not change at second or third dose if there is moderate local or systemic reaction. The allergen concentration will decrease by 10 or 100-fold from previous concentration or further injection will be held if there is severe local or systemic reaction after sufficient explanation and discussion with subjects.

    The investigators will assess allergic rhinitis symptom score before and 4, 12 months after the initial treatment.

    Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) and Sino-Nasal Outcome Test (SNOT-20) will be used. Visual analogue scale (VAS) of symptoms including rhinorrhea, sneezing, nasal obstruction, postnasal drip, eye/nose/ear/palate itching, dyspnea, wheezing, chest discomfort as well as urticaria, angioedema, and itching on exposed skin during exposure to causal allergen in daily life will be also evaluated. Skin prick test (SPT), intradermal test (IDT), blood sampling for serum entire immunoglobulin E (IgE), allergen-specific IgE, and allergen-specific immunoglobulin G4 (IgG4), nasal lavage for Th1, Th2, and Treg cytokines, and nasal provocation test (NPT) with Df and/or Dp allergen (in subjects whose AR symptoms are provoked by Df and/or Dp) will be also performed before and 4, 12 months after the initial treatment.

    In addition, the investigators evaluated the change of subjects’ recognition of causal allergens, their avoidance, and AIT during this study. Using VAS, subjects were requested to score the rate of agreement with "Allergen provokes allergic symptoms in daily life", "Allergen avoidance can reduce allergic symptoms", "Allergen-specific Immunotherapy (AIT) can reduce allergic symptoms", "I can pay 50,000 Korean Won (KRW)/month for allergen avoidance", "I can pay 100,000 KRW/month for allergen avoidance", "I can pay 200,000 KRW/month for allergen avoidance", "I can pay 150,000 KRW for each injection of ILIT", "I can pay 300,000 KRW for each injection of ILIT", "I can pay 600,000 KRW for each injection of ILIT" before and after SPT/IDT, after NPT, 4 months and 1 year after ILIT.

    Adverse events will be recorded and graded according to Muller classification and Ring and Meissner classification.


    Bakgrunnsstoff[endre | endre wikiteksten]

    Mikrograf av husstøvmidd-ho.

    Donald Hoffman, Henning Lowenstein, David G. Marsh,
    Thomas A.E. Platts-Mills and Wayne Thomas

    This article was first published in the Bulletin of the World Health Organization,
    72(5):796-806 (1994), and is reproduced here by permission.
    Minor corrections were made here. There are no reprints available.

    A. Introduction.

    Rapid advances own been made in the past few years on allergen characterizationand sequence determination by chemical and molecular biological approaches.

    This is indicated by the list of allergens with known partial or finish amino acid sequences in Table 1.

    A number of other significant allergens are known in addition to those in Table 1 but their sequences are as yet not known. A useful source for known allergens is the Allergen Database (ALBE) in which are compiled their known biochemical and immunological properties together with their
    sequence data if known (1).

    To take into account these advances, a revision of the current allergen
    nomenclature system (2) is given under. As in the current nomenclature system,
    the proposed revisions are for allergens which induce IgE-mediated (atopic) allergy in humans. In addition to the expected thorough immunochemical characterization of any newly discovered allergen, investigators are urged to obtain partial, or preferably finish, sequence data before using the official nomenclature system.

    Also it is expected that investigators would screen a reasonable population size so as to establish the frequency of response in patients to the newly discovered allergens. (Investigators are invited to consult our committee members for assigning an allergen number before publication so as to avoid duplication).
    Investigators frequently refer to allergens as major or minor ones. The
    generally accepted meaning of this terminology is that an allergen is designated as either major or minor depending on whether greater or less than 50% of  patients tested own the corresponding allergen-specific IgEs (cf.

    3-5).
    The revised nomenclature for allergens is given under together with the
    proposed nomenclatures for (a) allergen genes, mRNAs and cDNAs and (b) recombinant and synthetic peptides of allergenic interest.

    B. Revised Allergen Nomenclature.

    1. Allergens.

    Allergens are designated according to the accepted taxonomic name of their source as follows: the first three letters of the genus, space, the first letter  of the species, space, and an Arabic number.

    The numbers are assigned to the allergens in the order of their identification, and the same number is generally used to designate homologous allergens of related species. As two examples, Lol p 1 refers to the first pollen allergen identified from Lolium perenne, rye grass, and Cyn d 1 refers to the homologous pollen allergen from Cynodon dactylon, Bermuda grass.
    In some instances, the above system of the first 3 letters of a genus and the first letter of a species has to be modified to include an additional letter for designation of the exact genus or species.

    For example, 4 of the numerous vespids which can cause insect allergy are Vespula vulgaris, Vespula vidua, Vespula consobrina and Vespa crabo. The homologous major venom allergens, antigen 5s, from Vespula vulgaris and Vespula vidua are both designated as Ves v 5 in the existing nomenclature, and those from Vespula consobrina and Vespa crabo are designated as Ves c 5. To avoid these ambiguities, antigen 5s from Vespula vulgaris and Vespula vidua will be designated as Ves v 5 and Ves vi 5 respectively, and those from Vespula consobrina and Vespa crabo as Ves c 5 and Vesp c 5. In the examples given, the modified nomenclature is used for the allergens from Vespula vidua and Vespa crabo, as the allergens from Vespula vulgaris were characterized prior to those for Vespula vidua and Vespa crabo.

    Another example is for allergens from the domestic dog (Canis domesticus) and the mold Candida albicans. To avoid ambiguity, the modified system is used to designate Can d and Cand a allergens from these two sources respectively.
    In the current nomenclature system (2) the letters are italicized and the numerals are Roman numerals. In the revised system, only letters of normal type and Arabic numbers are used. The proposed changes conform to the accepted nomenclature used in bacterial genetics (6) and HLA system (7) in that italicized and normal characters are used to represent genotypes and phenotypes respectively. Allergens are designated according

    2.

    Allergens and isoallergens.

    An allergen from a single species may consist of several closely similar
    molecules. These similar molecules are designated as isoallergens when they share the following common biochemical properties:
      a. similar molecular size
      b. identical biological function, if known, e.g. enzymatic action
      c. > 67% identity of amino acid sequences.

    It is recognized that the recommended > 67% sequence identity for 2 allergens to be assigned to the same group is only a guide.

    There are likely to be borderline cases. As an example, the ragweed allergens Amb a 1 and 2 share 65% amino acid sequence identity (8). These allergens were assigned to diverse groups because of their diverse immunochemical properties before their sequences were known.
    Allergens from diverse species of the same or diverse genus which share the above-mentioned common biochemical properties are considered to belong to the same group and the sequence identity requirement can be < 67% as is the case for allergens of the same species. For example, Amb a 5 and Amb t 5 from short and giant ragweed pollens own about 45% sequence identity (9), and also own similar tertiary structures (10, 11).

    Another example is the minor pollen allergens Amb a 10, Poa p 10 and Lol p 10 from ragweed (12), Kentucky bluegrass (13) and rye grass (14).
    Although their sequences are not known, they are assigned to the same allergen group as they clearly own the same biological function of cytochrome c.

    3. Isoallergens and variants.

    cDNA cloning of allergens often show nucleotide mutations which are either silent or which can lead to single or multiple amino acid substitutions. In the revised system, members of an allergen group which own > 67% amino acid sequence identity are designated as isoallergens.

    Each isoallergen may own multiple forms of closely similar sequences, which are designated as variants.
    Isoallergens and their variants belonging to the same allergen group are designated by suffixes of a period followed by four Arabic numerals. The first two numerals 01 to 99 refer to a specific isoallergen, and the two subsequent numerals 01 to 99 refer to a specific variant of a specific isoallergen designated by the preceding two numerals. In cases where there is only one known isoallergen but there are several variants, the system of a suffix of 4 numerals will still apply. These numerals will be chosen in the order of the identification of allergens and/or their cDNAs irrespective of the physicochemical properties of the allergens.

    In cases of silent mutations, there can be more than one suffix of 4 numerals designating the same allergen and in that case the suffix with the lowest number will be used to designate the allergen of interest.
    The addition of suffixes of 4 numerals to designate isoallergens and their variants will permit their unambiguous designation. In numerous cases it is unnecessary to specify the isoallergen or variant and the corresponding suffixes may be deleted; e.g. Bet v 1 represents any Bet v 1 allergen and Bet v 1.0101 represents variant number 1 of isoallergen Bet v 1.

    Two other examples of this nomenclature system are given under.
    On cDNA cloning, Amb a I showed multiple polymorphic forms which differ from each other by 12-24% in their sequences (8). Four such forms of Amb a I are known and they are designated as Amb a 1.01, 1.02, 1.03 and 1.04. Each isoallergen of the Amb a I group is found to own 1 to 3 variants with > 97% of&n sequence identity. These variants of the Amb a 1.01 group will be designated as Amb a 1.0101, 1.0102 and etc.

    In contrast to Amb a I, only two forms of Amb a II were found on cDNA cloning. These forms differ in two polymorphic sites and they own > 99% amino acid sequence identity. They are designated as Amb a 2.0101 and 2.0102.

    C. Nomenclature for allergen genes, mRNAs and cDNAs.

    At present the genomic structures of allergens are known in at least two cases; cat allergen Fel d 1 and mouse urinary allergen Mus m 1. Knowledge of the genomic structure can provide an understanding of how the diverse polymorphic forms are generated by differential splicing and/or exon usage.

    By adopting the revised nomenclature for allergens, we can reserve the italicized characters to designate an allergen gene. Normal characters are used for designation of mRNAs and cDNAs.
    For example, Fel d 1 is a protein consisting of two polypeptide chains (15) which are encoded by two separate genes (16). The two allergen genes for chains 1 and 2 of Fel d 1 will be represented by Fel d 1A and Fel d 1B respectively.
    Allelic forms of mRNAs and cDNAs of the Fel d 1A gene are designated as mRNA or cDNA Fel d 1A.0101 where the numerals are to correspond to those of the polymorphic allergens.

    D. Nomenclature for recombinant and synthetic peptides of allergenic interest.

    There is interest in the possible use of fragments of allergens as reagents to modulate allergen-specific immune responses. Such fragments may be prepared by recombinant technology or by chemical synthesis. Therefore it is useful to establish a generally accepted nomenclature for such peptides of allergenic interest.
    The nomenclature for recombinant and synthetic peptides of allergenic interest is to be based on the nomenclature for naturally occurring allergens since it is well accepted by the scientific and the clinical communities.
    An allergen which is prepared by recombinant (r) or chemical synthetic (s) means is to be differentiated from a natural (n) allergen by the addition of the prefix of r or s followed by a suffix of the amino acid residue positions which are given in parenthesis.

    For examples, a recombinant hornet venom allergen Dol m 5.0201 which contains the entire sequence of 204 residues will be designated as rDol m 5.0201, and a recombinant or synthetic peptide of residue 151-165 of Dol m 5.0201 will be designated as r or sDol m 5.0201 (151-165) respectively.
    Natural allergens may contain post-translational modifications as numerous proteins do. These modifications include glycosylation, acylation, methylation and etc. Recombinant or synthetic allergen, designated by the prefix r or s, is taken to indicate that it does not contain the post-translational modification of the natural allergen.

    If the recombinant or synthetic allergen does contain the exact same modification as that of the natural allergen, it will be designated with a prefix of rn or sn. For example, the honey bee venom allergen phospholipase A2, Api m 1, is a glycoprotein with an oligosaccharide attached at the asparagine residue number 13 (17, 18). A synthetic peptide of residues 1-20 of Api m 1 without the oligosaccharide at residue 13 will be designated as sApi m 1 (1-20), and a synthetic peptide of residue 1-20 with the exact same oligosaccharide of the natural allergen will be designated as snApi m 1 (1-20).
    For recombinant or synthetic fragments which are derivatives of sequences contained within the native allergen structure, an additional suffix enclosed in square brackets will be used to indicate that the peptide referred to is an analogue.

    Substitutions or modifications of amino acid residues are given with the standard one-letter code and superscript numbers indicate the residue positions at which modifications happen. The one-letter codes for L-amino acids are given in upper case letters and those for D-amino acids are in lower case letters.
    The modifications which can be substitution, insertion or deletion are specified in parenthesis within the brackets. Obviously when there are numerous changes, it will not be practical to follow this nomenclature but to give the fully modified sequences. Examples of these analogs of sDol m 5.0201 (151-165) are given below:

    1. Unmodified: sDol m 5.0201 (151-165)
    2. Insertion: sDol m 5.0201 (151-165) [+K 153] — one residue of L-lysine is inserted between positions 153-154
    3. N-terminal modification: sDol m 5.0201 (151-165) [N-Ac] — N-terminal amino group is acetylated
    4. Deletion: sDol m 5.0201 (151-165) [-K 153] — L-lysine residue at position 153 is deleted
    5. Substitution: sDol m 5.0201 (151-165) [k 153] — L-lysine residue at position 153 of sDol m 5.0201 (151-165) is substituted with D-lysine
    6. C-terminal modification: sDol m 5.0201 (151-165) [C-NH2] — C-terminal carboxyl group is in the form of carboxamide

    The nomenclature proposed above is extremely similar to that used for synthetic pe ptides representative of immunoglobulin sequences (19).

    E. Acknowledgment

    We thank Drs. Martin Chapman, Irwin Griffith, Shyam Mohapatra,
    Rodriguez and Alec Sehon for reviewing this document.

    Table 1

    Some allergens with known sequences

    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    A. Weed pollens.
    Asterales Ambrosia artemisiifolia (short ragweed)
    Amb a 1 antigen E 38 c 8, 20
    Amb a 2 antigen K 38 c 8, 21
    Amb a 3 Ra3 11 c 22
    Amb a 5 Ra5 5 c 11, 23
    Amb a 6 Ra6 10 c 24, 25
    Amb a 7 Ra7 12 p 26
    Amb a ? 11 c 27
    Ambrosia trifida (giant ragweed)
    Amb t 5 Ra5G 4.4 c 9, 10, 28
    Artemisia vulgaris (mugwort)
    Art v 2 35 p 29
    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    B.

    Grass pollens.

    Poales Cynodon dactylon (Bermuda grass)
    Cyn d 1 32 c 30, 31
    Dactylis glomerata (orchard grass)
    Dac g 1 AgDg1 32 p 32
    Dac g 2 11 c 33
    Dac g 5 31 p 34
    Lolium perenne (rye grass)
    Lol p 1 group I 27 c 35, 36
    Lol p 2 group II 11 c 37
    Lol p 3 group III  11 c 38
    Lol p 5 31 p 34
    Lol p 9 Lol p Ib 31/35 c 39
    Phleum pratense (timothy grass)
    Phl p 1 27 c 40, 41
    Phl p 5 Ag25 32 c 42, 43, 44, 45
    Poa pratensis (Kentucky blue grass)
    Poa p 1 group I 33 p 46
    Poa p 5 31 p 34
    Poa p 9 32/34 c 47
    Sorghum halepense (Johnson grass)
    Sor h 1 c 48
    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    C.

    Tree pollens.

    Fagales Alnus glutinosa (alder)
    Aln g 1 17 c 49
    Betula verrucosa (birch)
    Bet v 1 17 c 50
    Bet v 2 profilin 15 c 51
    Carpinus betulus (hornbeam)
    Car b 1 17 c 52
    Corylus avellana (hazel) 
    Cor a 1 17 c 53
    Quercus alba (white oak)
    Que a 1 17 p 54
    Pinales Cryptomeria japonica (sugi)
    Cry j 1 41-45 c 55, 56
    Cry j 2 c 57, 58
    Juniper sabinoides (mountain cedar)
    Jun s 1 50 c 59
    Juniper virginiana (eastern red cedar) 
    Jun v 1 45-50 c 58
    Oleales Olea europea (olive)
    Ole e 1 16 c 59, 60
    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    D.

    Mites.

    Dermatophagoides pteronyssinus (mite)
    Der p 1 antigen P1 25 c 61
    Der p 2 14 c 62
    Der p 3 trypsin 28/30 p 63
    Der p 4 amylase 60 p 64
    Der p 5 14 c 65
    Der p 6 chymotrypsin 25 p 66
    Der p 7 22-28 c 67
    Dermatophagoides microceras (mite)
    Der m 1 25 p 68
    Dermatophagoides farinae (mite)
    Der f 1 25 c 69
    Der f 2 14 c 70, 71
    Der f 3 30 p 72
    Lepidoglyphus destructor (storage mite)
    Lep d ? 15 p 73
    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    E.

    Animals.

    Canis familiaris (dog)
    Can f 1 25 c 74, 75
    Can f 2 27 c 74, 75
    Felis domesticus (cat saliva)
    Fel d 1 cat-1 38 c 15
    Mus musculus (mouse urine)
    Mus m 1 MUP 19 c 76, 77
    Rattus norvegius (rat urine) 
    Rat n 1 17 c 78, 79
    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    F.

    Fungi.

    Aspergillus fumigatus
    Asp f 1 18 c 80
    Asp f ? 90 p 81
    Asp f ? 55 p 82
    Candida albicans
    Cand a ? 40 c 83
    Alternaria alternata
    Alt a 1 28 p 84, 85, 86
    Trichophyton tonsurans
    Tri t 1 30 p 87
    Allergen source MW seq.

    Systematic name Former name(s) kDa data References
    G. Insects.
    Apis mellifera (honey bee)
    Api m 1 phospholipase A2 16 c 88
    Api m 2 hyaluronidase  44 c 89
    Api m 4 melittin 3 c 90
    Bombus pennsylvanicus (bumble bee) 
    Bom p 1 phospholipase 16 p 91
    Bom p 4 protease p 91
    Blattaria germanica (cockroach)
    Bla g 2 20 c 92
    Chironomus thummi thummi (midges)
    Chi t 1 hemoglobin 16 c 93
    Dolichovespula maculata (white face hornet)
    Dol m 1 phospholipase A1 35 c 94
    Dol m 2 hyaluronidase  44 c 95
    Dol m 5 antigen 5 23 c 96, 97
    Dolichovespula arenaria (yellow hornet) 
    Dol a 5 antigen 5 23 c 98
    Polistes annularis (wasp)
    Pol a 1 phospholipase A1 35 p 99
    Pol a 2 hyaluronidase 44 p 99
    Pol a 5 antigen 5 23 c 98
    Polistes exclamans (wasp)
    Pol e 1 phospholipase A1 34 p 101
    Pol e 5 antigen 5 23 c 98
    Polistes fuscatus (wasp)
    Pol f 5 antigen 5 23 c 100
    Polistes metricus (wasp)
    Pol m 5 antigen 5 23 p 100
    Vespula flavopilosa (yellowjacket) 
    Ves f 5 antigen 5 23 c 100
    Vespula germanica (yellowjacket)
    Ves g 5 antigen 5 23 c 100
    Vespula maculifrons (yellowjacket)
    Ves m 1 phospholipase A1 33.5 c 102
    Ves m 2 hyaluronidase 44 p 103
    Ves m 5 antigen 5 23 c 98
    Vespula pennsylvanica (yellowjacket)
    Ves p 5 antigen 5 23 c 100
    Vespula squamosa (yellowjacket)
    Ves s 5 antigen 5 23 c 100
    Vespula vidua (wasp) 
    Ves vi 5 23 c 100
    Vespula vulgaris (yellowjacket)
    Ves v 1 phopholipase A1 35 c 99
    Ves v 2 hyaluronidase 44 p 99
    Ves v 5 antigen 5 23 c 98
    Vespa crabo (European hornet)
    Vesp c 1 phospholipase 34 p 101
    Vesp c 5 antigen 5 23 c 100
    Solenopsis invicta (fire ant)
    Sol i 2 13 c 104, 105
    Sol i 3 24 c 104
    Sol i 4 13 c 104
    Allergen source MW seq.
    Systematic name Former name(s) kDa data References
    H.

    Foods.

    Gadus Callarias (cod)
    Gad c 1 allergen M 12 c 106
    Gallus domesticus (chicken)
    Gal d 1 ovomucoid 28 c 107, 108
    Gal d 2 ovalbumin 44 c 107, 108
    Gal d 3 conalbumin(Ag22) 78 c 107, 108
    Gal d 4 lysozyme 14 c 107, 108
    Penaeus aztecus (shrimp)
    Pen a 1 tropomyosin 36 p 109
    Penaeus indicus (shrimp)
    Pen i 1 tropomyosin 34 c 110
    Brassica juncea (oriental mustard)
    Bra j 1 25 albumin  14 c 111
    Hordeum vulgare (barley)
    Hor v 1 BMAI-1 15 c 112
    Sinapis alba (yellow mustard)
    Sin a 1 25 albumin 14 c 113
    Allergen source
    Systematic name Former name(s) References
    I.

    Others.

    Ascaris suum (worm)
    Asc s 1 10 p 114
    Hevea brasiliensis (rubber) 
    Hev b1  elongation factor 58 p 115

    References refer to those where partial (P) or finish (C) sequence data are available. The original references describing the initial characterization studies are not given because of limited space. Also we apologize to our colleagues whose allergen sequence data we may own overlooked, or whose publications appeared after Dec., 1993, for inclusion in this table.

    Sequence data for group 5 and 9 allergens from several grass pollens indicate that they are highly homologous proteins. Comparison of finish sequencedata of group 5 and 9 allergens from a single grass species will clarify whether these two groups are the same protein.

    References

    1. Marsh, D.G., and L.R. Freidhoff. 1992. ALBE, an allergen database. IUIS, 

    Baltimore, MD, Edition 1.0.

    2. Marsh, D. G., L. Goodfriend, T. P. King, H. Lowenstein, and T. A. E. Platts-

    Mills.

    1986. Allergen nomenclature. Bull WHO 64:767-770.

    3. King, T.P., P.S. Norman, and J.T. Cornell. 1964. Isolation and 

    characterization of allergen from ragweed pollen. II. Biochemistry 3:458-468.

    4. Lowenstein, H. 1980. Timothy pollen allergens. Allergy 35:188-191.

    5. Aukrust, L. 1980. Purification of allergens in Cladosporium herbarum.
    Allergy 35:206-207.

    6. Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A 

    proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-75.

    7. Bodmer, J. G., E. D. Albert, W. F. Bodmer, B. Dupont, H. A. Erlich, B.

    Mach, S. G. E. Marsh, W.

    R. Mayr, P. Parham, T. Sasuki, G. M. Th.

    Schreuder, J.

    What is pteronyssinus allergy

    L. Strominger, A. Svejgaard, and P. I. Terasaki. 1991.

    Nomenclature for factors of the HLA system, 1990. Immunogenetics 33:301-309.

    8. Griffith, I.J., J. Pollock, D.G. Klapper, B.L. Rogers, and A.K. Nault. 1991.

    Sequence polymorphism of Amb a I and Amb a II, the major allergens in 

    Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol.

    96:296-304.

    9. Roebber, M., D. G. Klapper, L. Goodfriend, W. B. Bias, S. H. Hsu, and D.
    G. Marsh. 1985. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5
    homologue from giant ragweed pollen. J. Immunol. 134:3062-3069.

    10. Metzler, W. J., K. Valentine, M. Roebber, M. Friedrichs, D. G. Marsh, and 

    L. Mueller. 1992. Solution structures of ragweed allergen Amb t V. Biochemistry 

    31:5117-5127.

    11. Metzler, W. J., K. Valentine, M. Roebber, D. G. Marsh, and L. Mueller.

    1992. Proton resonance assignments and three-dimensional solution structure of 

    the ragweed allergen Amb a V by nuclear magnetic resonance spectroscopy.

    Biochemistry 31:8697-8705.

    12. Goodfriend, L., A.M. Choudhury, J. Del Carpio, and T.P. King.

    1979.

    Cytochromes C: New ragweed pollen allergens. Fed. Proc. 38:1415.

    13. Ekramoddoullah, A. K. M., F. T. Kisil, and A. H. Sehon. 1982. Allergenic 

    cross reactivity of cytochrome c from Kentucky bluegrass and perennial ryegrass 

    pollens. Mol. Immunol. 19:1527-1534.

    14. Ansari, A. A., E. A. Killoran, and D. G. Marsh. 1987. An investigation
    of human response to perennial ryegrass (Lolium perenne) pollen cytochrome c 

    (Lol p X). J. Allergy Clin.

    Immunol. 80:229-235.

    15. Morgenstern, J.P., I.J. Griffith, A.W. Brauer, B.L. Rogers, J.F. Bond, M.D.

    Chapman, and M. Kuo. 1991. Amino acid sequence of Fel d I, the major allergen 

    of the domestic cat: protein sequence analysis and cDNA cloning. Proc. Natl.
    Acad. Sci. USA 88:9690-9694.

    16. Griffith, I.J., S. Craig, J. Pollock, X. Yu, J.P. Morgenstern, and B.L.
    Rogers. 1992. Expression and genomic structure of the genes encoding FdI, the
    major allergen from the domestic cat.

    Gene 113:263-268.

    17. Weber, A., L. Marz, and F. Altmann. 1986. Characteristics of the asparagine-

    linked oligosaccharide from honey-bee venom phospholipase A2. Comp. Biochem.

    Physiol. 83B:321-324.

    18. Weber, A., H. Schroder, K. Thalberg, and L. Marz. 1987. Specific 

    interaction of IgE antibodies with a carbohydrate epitope of honey bee venom 

    phospholipase A2. Allergy 42:464-470.

    19. Stanworth, D. R., K.

    J. Dorrington, T. E. Hugli, K. Reid, and M. W. Turner.

    1990. Nomenclature for synthetic peptides representative of immunoglobulin
    chain sequences. Bulletin WHO 68:109-111.

    20. Rafnar, T., I. J. Griffith, M. C. Kuo, J. F. Bond, B. L. Rogers, and D.
    G. Klapper. 1991. Cloning of Amb a I (Antigen E), the major allergen family of
    short ragweed pollen. J. Biol. Chem. 266: 1229-1236.

    21. Rogers, B.L., J.P. Morgenstern, I.J. Griffith, X.B. Yu, C.M. Counsell, A
    .W. Brauer, T.P. King, R.D. Garman, and M.C. Kuo. 1991. Finish sequence 

    of the allergen Amb a II: recombinant expression and reactivity with T cells from 

    ragweed allergic patients. J. Immunol. 147:2547-2552.

    22. Klapper, D.G., L. Goodfriend, and J.D. Capra. 1980. Amino acid sequence 

    of ragweed allergen Ra3.

    Biochemistry 19:5729-5734.

    23. Ghosh, B., M.P. Perry, T. Rafnar, and D.G. Marsh. 1993. Cloning and 

    expression of immunologically athletic recombinant Amb a V allergen of short 

    ragweed (Ambrosia artemisiifolia) pollen. J. Immunol. 150:5391-5399.

    24. Roebber, M., R. Hussain, D. G. Klapper, and D. G. Marsh. 1983. Isolation 

    and properties of a new short ragweed pollen allergen, Ra6.

    J. Immunol.

    131:706-711.

    25. Lubahn, B., and D.G. Klapper. 1993. Cloning and characterization of 

    ragweed allergen Amb a VI (abst). J. Allergy Clin. Immunol. 91:338.

    26. Roebber, M., and D.G. Marsh. 1991. Isolation and characterization of 

    allergen Amb a VII from short ragweed pollen. J. Allergy Clin. Immunol. 87:324.

    27. Rogers, B.L., J. Pollock, D.G. Klapper, and I.J. Griffith. 1993. Cloning, 

    complete sequence, and recombinant expression of a novel allergen from short
    ragweed pollen (abst).

    J. Allergy Clin. Immunol. 91:339.

    28. Goodfriend, L., A.M. Choudhury, D.G. Klapper, K.M. Coulter, G. Dorval, J.
    DelCarpio, and C.K. Osterland. 1985. Ra5G, a homologue of Ra5 in giant 

    ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence.

    Mol. Immunol. 22:899-906.

    29. Nilsen, B. M., K. Sletten, M. O’Neill, B. Smestead Paulsen, and H. van 

    Halbeek. 1991. Structural analysis of the glycoprotein allergen Art v II from 

    pollen of mugwort (Artemesia vulgaris).

    J. Biol. Chem. 266:2660-2668.

    30. Matthiesen, F., M. Schumacher, and H. Lowenstein. 1991. Characterization 

    of the major allergen of Cynodon dactylon (Bermuda grass) pollen. J. Allergy
    Clin. Immunol. 88:763-774.

    31. Smith, P.M., M.B. Singh, and R.B. Knox. 1993. Characterization and 

    cloning of the major allergen of Bermuda grass, Cyn d I. In: «Molecular Biology and
    Immunology of Allergens» (D.

    Kraft and A. Sehon, eds.). CRC Press, Boca Raton.
    pp. 157-160.

    32. Mecheri, S., G. Peltre, and B. David. 1985. Purification and characterization 

    of a major allergen from Dactylis glomerata pollen: The Ag Dg 1. Int. Arch.

    Allergy Appl. Immunol. 78:283-289.

    33. Roberts, A.M., L.J. Bevan, P.S. Flora, I. Jepson, and M.R. Walker. 1993.

    Nucleotide sequence of cDNA encoding the Group II allergen of Cocksfoot/

    Orchard grass (Dactylis glomerata), Dac g II.

    Allergy 48:615-623.

    34. Klysner, S., K. Welinder, H. Lowenstein, and F. Matthiesen. 1992. Group 

    V allergens in grass pollen IV. Similarities in amino acid compositions and amino 

    terminal sequences of the group V allergens from Lolium perenne, Poa pratensis 

    and Dactylis glomerata. Clin. Exp. Allergy 22: 491-497.

    35. Perez, M., G. Y. Ishioka, L. E. Walker, and R. W. Chesnut. 1990. cDNA
    cloning and immunological characterization of the rye grass allergen Lol p I.

    J. Biol. Chem. 265:16210-16215.

    36. Griffith, I. J., P. M. Smith, J. Pollock, P. Theerakulpisut, A. Avjioglu, 

    S. Davies, T. Hough, M. B. Singh, R. J. Simpson, L. D. Ward, and R. B. Knox.

    1991. Cloning and sequencing of Lol p I, the major allergenic protein of rye-

    grass pollen. FEBS Letters 279:210-215.

    37. Ansari, A. A., P. Shenbagamurthi, and D.G. Marsh. 1989. Finish amino
    acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II.

    J. Biol. Chem. 264:11181-11185.

    38. Ansari, A. A., P. Shenbagamurthi, and D. G. Marsh. 1989. Complete 

    primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p I
    II: Comparison with known Lol p I and II sequences.

    Biochemistry 28:8665-8670.

    39. Singh, M. B., T. Hough, P. Theerakulpisut, A. Avjioglu, S. Davies, P. M.
    Smith, P. Taylor, R. J. Simpson, L. D. Ward, J. McCluskey, R. Puy, and R.B.

    Knox. 1991. Isolation of cDNA encoding a newly identified major allergenic protein 

    of rye-grass pollen: Intracellular targeting to the amyloplost. Proc. Natl. Acad.

    Sci. 88:1384-1388.

    What is pteronyssinus allergy

    40. Matthiesen, F., A.K. Nielsen, T.J. Sogaard, S. Klysner, and H. Lowenstein.

    1992. NH2-terminal sequences of four immunoaffinity purified grass pollen 

    allergens: Phl p I, Poa p I, Sec c I and Cyn d I (abst.). Allergy (Supp.) 47:31.

    41. Laffer, S., S. Vrtala, D. Kraft, and O. Scheiner. 1992. cDNA cloning of 

    a major allergen of rye (Secale cereale) and timothy grass (Phleum pratense).
    XVth Eur. Congress of Allergology and Clin. Immunol. Paris.

    42. Matthiesen, F., and H.

    Lowenstein. 1991. Group V allergens in grass 

    pollens. I. Purification and characterization of the group V allergen from Phleum
    pratense pollen, Phl p V. Clin. Exp. Allergy 21:297-307.

    43. Vrtala, S., S. Laffler, M. Duchene, D. Kraft, O. Scheiner, and R. Valenta.

    1992. cDNA cloning of a major grass pollen allergen from timothy grass 

    (Phleum pratense): identification as Phl p V, a protein with possible targeting to 

    the amyloplast. XVth Eur. Congress of Allergology and Clin. Immunol. Paris.

    44. Petersen, A., W.M. Becker, and M. Schlaak. 1992. Characterization of 

    isoforms of the major allergen Phl p V by immunoblotting and microsequencing.

    Int. Arch. Allergy Immunol. 98:105-109.

    45. Bufe, A., W.M. Becker, A. Peterson, G. Schramm and M. Schlaak. 1993.

    Partial mRNA sequence of Phl p V. EMBL accession number X70942.

    What is pteronyssinus allergy

    46. Esch, R. E., and D. G. Klapper. 1989. Isolation and characterization of 

    a major cross-reactive grass group I allergenic determinant. Mol. Immunol. 26
    :557-561.

    47. Olsen, E., L. Zhang, R. D. Hill, F. T. Kisil, A. H. Sehon, and S.

    Mohapatra. 1991. Identification and characterization of the Poa p IX group 

    of basic allergens of Kentucky bluegrass pollen. J. Immunol. 147:205-211.

    48. Avjioglu, A., M. Singh, and R.B. Knox. 1993. Sequence analysis of Sor
    h I, the group I allergen of Johnson grass pollen and it comparison to rye-grass
    Lol p I (abst).

    J. Allergy Clin. Immunol. 91:340.

    49. Breiteneder, H., F. Ferreira, A. Reikerstorfer, M. Duchene, R. Valenta,
    K. Hoffmann-Sommergruber, C. Ebner, M. Breitenbach, D. Kraft, and O. Scheiner.

    1992. Complementary DNA cloning and expression in Escherichia coli of Aln g I, 

    the major allergen in pollen of alder (Alnus glutinosa). J. Allergy Clin. Immunol.

    90:909-917.

    50. Breiteneder, H., K. Pettenburger, A. Bito, R. Valenta, D. Kraft, H.

    Rumpold,

    O. Scheiner, and M. Breitenbach. 1989. The gene coding for the major birch 

    pollen allergen Bet v I is highly homologous to a pea disease resistance response 

    gene. EMBO J. 8:1935-1938.

    51. Valenta, R., M. Duchene, C. Ebner, P. Valent, C. Sillaber, P. Deviller,
    F. Ferreira, M. Tejkl, H. Edelmann, D. Kraft, and O. Scheiner. 1992. Profilins
    constitute a novel family of functional plant pan-allergens. J. Exp. Med. 175:3
    77-385.

    52. Larsen, J.N., P. Stroman, and H. Ipsen. 1992. PCR based cloning and 

    sequencing of isogenes encoding the tree pollen major allergen Car b I from 

    Carpinus betulus, hornbeam.

    Mol. Immunol. 29:703-711.

    53. Breiteneder, H., F. Ferreira, K. Hoffman-Sommergruber, C. Ebner, M.

    Breitenbach, H. Rumpold, D. Kraft, and O. Scheiner. 1993. Four recombinant 

    isoforms of Cor a I, the major allergen of hazel pollen. Europ. J. Biochem.

    212:355-362.

    54. Ipsen, H., and B.C. Hansen. 1991. The NH2-terminal amino acid sequence
    of the immunochemically partial identical major allergens of alder (Alnus 

    glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) 

    Car b I and oak (Quercus alba) Que a I pollens.

    Mol. Immunol. 28:1279-1288.

    55. Taniai, M., S. Ando, M. Usui, M. Kurimoto, M. Sakaguchi, S. Inouye, and
    T. Matuhasi.

    What is pteronyssinus allergy

    1988. N-terminal amino acid sequence of a major allergen of 

    Japanese cedar pollen (Cry j I). FEBS Lett. 239:329-332.

    56. Griffith, I.J., A. Lussier, R. Garman, R. Koury, H. Yeung, and J. Pollock.

    1993. The cDNA cloning of Weep j I, the major allergen of Cryptomeria japonica 

    (Japanese cedar) (abst). J. Allergy Clin. Immunol. 91:339.

    57. Sakaguchi, M., S. Inouye, M. Taniai, S. Ando, M.

    Usui, and T. Matuhasi.
    1990. Identification of the second major allergen of Japanese cedar pollen.

    Allergy 45:309-312.

    58. Griffith, I. Personal communication; Immulogic Pharmaceutical Corp.

    59. Cardaba, B., D. Hernandez, E. Martin, B. de Andres, V. del Pozo, S.

    Gallardo, J.C. Fernandez, R. Rodriguez, M. Villalba, P. Palomino, A. Basomba, 

    and C. Lahoz. 1993. Antibody response to olive pollen antigens: association between
    HLA class II genes and IgE response to Ole e I (abst). J. Allergy Clin. Immunol
    . 91:338.

    60. Villalba, M., E. Batanero, C.

    Lopez-Otin, L.M. Sanchez, R.I. Monsalve, M
    .A. Gonzalez de la Pena, C. Lahoz, and R. Rodriguez. 1993. Amino acid sequence
    of Ole e I, the major allergen from olive tree pollen (Olea europaea). Eur.
    J. Biochem. 216:863-869.

    61. Chua, K. Y., G. A. Stewart, and W. R. Thomas. 1988. Sequence analysis
    of cDNA encoding for a major home dust mite allergen, Der p I. J. Exp. Med.

    167:175-182.

    62. Chua, K. Y., C. R. Doyle, R. J. Simpson, K. J. Turner, G. A. Stewart, and 

    W. R. Thomas. 1990. Isolation of cDNA coding for the major mite allergen Der
    p II by IgE plaque immunoassay. Int.

    Arch. Allergy Appl. Immunol. 91:118-123.

    63. Stewart, G.A., L.D. Ward, R.J. Simpson, and P.J. Thompson. 1992. The 

    group III allergen from the home dust mite Dermatophagoides pteronyssinus is 

    a trypsin-like enzyme. Immunol. 75:29-35.

    64. Lake, F.R., L.D. Ward, R.J. Simpson, P.J. Thompson, and G.A. Stewart.

    1991. Home dust mite-derived amylase: Allergenicity and physicochemical 

    characterisation.

    What is pteronyssinus allergy

    J. Allergy Clin. Immunol. 87:1035-1042.

    65. Tovey, E. R., M. C. Johnson, A. L. Roche, G. S. Cobon, and B. A. Baldo.
    1989. Cloning and sequencing of a cDNA expressing a recombinant home dust mite
    protein that binds human IgE and corresponds to an significant low molecular weight 

    allergen. J. Exp. Med. 170:1457-1462.

    66. Yasueda, H., T. Shida, T. Ando, S. Sugiyama, and H. Yamakawa. 1991.

    Allergenic and proteolytic properties of fourth allergens from Dermatophagoides 

    mites.

    In: «Dust Mite Allergens and Asthma. Report of the 2nd international work

    shop» A. Todt, Ed., UCB Institute of Allergy, Brussels, Belgium, pp. 63-64.

    67. Shen, H.-D., K.-Y. Chua, K.-L. Lin, K.-H. Hsieh, and W.R. Thomas. 1993.
    Molecular cloning of a home dust mite allergen with common antibody binding 

    specificities with multiple components in mite extracts. Clin. Exp. Allergy 23:934-40.

    68. Lind, P., O.C. Hansen, and N. Horn. 1988. The binding of mouse hybridoma 

    and human IgE antibodies to the major fecal allergen, Der p I of D.

    pteronyssinus.

    J. Immunol. 140:4256-4262.

    69. Dilworth, R. J., K. Y. Chua, and W. R. Thomas. 1991. Sequence analysis
    of cDNA coding for a mojor home dust allergn Der f I. Clin. Exp. Allergy 

    21:25-32.

    70. Nishiyama, C., T. Yunki, T. Takai, Y. Okumura, and H. Okudaira. 1993.

    Determination of three disulfide bonds in a major home dust mite allergen, Der 

    f II. Int. Arch. Allergy Immunol. 101:159-166.

    71. Trudinger, M., K. Y. Chua, and W. R. Thomas. 1991. cDNA encoding the 

    major dust mite allergen Der f II.

    Clin. Exp. Allergy 21:33-38.

    72. Heymann, P.W., M.D. Chapman, R.C. Aalberse, J.W. Fox, and T.A.E. Platts-
    Mills. 1989. Antigenic and structural analysis of group II allergens (Der f II
    and Der p II) from home dust mites (Dermatophagoides spp). J. Allergy Clin.

    Immunol. 83:1055-1067.

    73. van Hage-Hamsten, M., T. Bergman, E. Johansson, B. Persson, H. Jornvall,
    B. Harfast, and S.G.O. Johansson.

    1993. N-terminal amino acid sequence of 

    major allergen of the mite lepidoglyphus destructor (abst). J. Allergy Clin.

    Immunol. 91:353.

    74. de Groot, H., K.G.H. Goei, P. van Swieten, and R.C. Aalberse. 1991.

    Affinity purification of a major and a minor allergen from dog extract: Serologic
    activity of affiity-purified Can f I and Can f I-depleted extract. J. Allergy Clin.

    Immunol.

    87:1056-1065.

    75. Konieczny, A. Personal communication; Immunologic Pharmaceutical Corp.

    76. McDonald, B., M. C. Kuo, J. L. Ohman, and L. J. Rosenwasser. 1988.

    A 29 amino acid peptide derived from rat alpha 2 euglobulin triggers murine 

    allergen specific human T cells (abst). J. Allergy Clin. Immunol. 83:251.

    77. Clarke, A. J., P. M. Cissold, R. A. Shawi, P. Beattie, and J. Bishop. 1984.

    Structure of mouse urinary protein genes: differential splicing configurations in 

    the 3′-non-coding region. EMBO J 3:1045-1052.

    78.

    Longbottom, J. L. 1983. Chracterization of allergens from the urines 

    of experimental animals. McMillan Press, London, pp. 525-529.

    79. Laperche, Y., K. R. Lynch, K. P. Dolans, and P. Feigelsen. 1983. Tissue
    -specific control of alpha 2u globulin gene expression: constitutive synthesis in 

    submaxillary gland. Cell 32:453-460.

    80. Arruda, L.K., B.J. Mann, and M.D. Chapman. 1992. Selective expression
    of a major allergen and cytotoxin, Asp f I in Aspergillus fumigatus.

    J. Immunol
    . 149:3554-3559.

    81. Kumar, A., L.V. Reddy, A. Sochanik, and V.P. Kurup. 1993. Isolation 

    and characterization of a recombinant heat shock protein of Aspergillus fumigatus.
    J. Allergy Clin. Immunol. 91:1024-1030.

    82. Teshima, R., H. Ikebuchi, J. Sawada, S. Miyachi, S. Kitani, M. Iwama, M.
    Irie, M. Ichinoe, and T. Terao. 1993. Isolation and characterization of a major 

    allergenic component (gp55) of Aspergillus fumigatus. J. Allergy Clin. Immunol.

    92:698-706.

    83. Shen, H.D., K.B.

    What is pteronyssinus allergy

    Choo, H.H. Lee, J.C. Hsieh, and S.H. Han. 1991. The 

    40 kd allergen of Candida albicans is an alcohol dehydrogenease: molecular 

    cloning and immunological analysis using monoclonal antibodies.

    Clin. Exp. Allergy 21:675-681.

    84. Matthiesen, F., M. Olsen, and H. Lowenstein. 1992. Purification and 

    partial sequence of the major allergen of alternaria alternata, Alt a 1.

    J. Allergy Clin. Immunol. 89:241.

    85. Curran, I.H.A., N.M. Young, M. Burton, and H.M. Vijay.

    What is pteronyssinus allergy

    1992.

    Allergen extracts are currently manufactured in two forms: standardized and non-standardized. For the standardized allergen extracts, manufacturers compare the allergen extract to a U.S. reference standard for potency. CBER maintains these reference standards and distributes them to manufacturers. There are currently 19 standardized allergenic extracts.

    Extracts for which there are no U.S. reference standards are called non-standardized extracts.

    Standardized Allergen Extracts Licensed for Distribution in the United States

    Standardized Epidermals
    Cat Hair (Felis domesticus)

    1. ALK-Abello, Inc.
    2. Allergy Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Allermed Laboratories, Inc.
    5. ALK — Abello A/S
    6. Antigen Laboratories, Inc.
    7. Jubilant HollisterStier LLC

    Cat Pelt (Felis domesticus)

    1. ALK-Abello, Inc.
    2. Jubilant HollisterStier LLC

    Standardized Insects
    Mite D.f.

    (Dermatophagoides farinae)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Mite D.p. (Dermatophagoides pteronyssinus)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Standardized Pollens
    Bermuda Grass (Cynodon dactylon)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Kentucky (June) Bluegrass (Poa pratensis)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Meadow Fescue Grass (Festuca elatior)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Orchard Grass (Dactylis glomerata)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Redtop Grass (Agrostis alba)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Perennial Ryegrass (Lolium perenne)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Sweet Vernal Grass (Anthoxanthum odoratum)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Timothy Grass (Phleum pretense)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Short Ragweed (Ambrosia artemisiifolia)

    1. ALK-Abello, Inc.
    2. Allermed Laboratories, Inc.
    3. Greer Laboratories, Inc.
    4. Antigen Laboratories, Inc.
    5. Allergy Laboratories, Inc.
    6. Jubilant HollisterStier LLC

    Standardized Venom or Venom Protein
    Honey Bee Venom (Apis mellifera)

    1. ALK — Abello A/S
    2. Jubilant HollisterStier LLC

    Wasp Venom Protein (Polistes spp)

    1. ALK — Abello A/S
    2. Jubilant HollisterStier LLC

    White Faced Hornet Venom Protein (Dolichovespula maculate)

    1. ALK — Abello A/S
    2. Jubilant HollisterStier LLC

    Yellow Hornet Venom Protein (Dolichovespula arenaria)

    1. ALK — Abello A/S
    2. Jubilant HollisterStier LLC

    Yellow Jacket Venom Protein (Vespula spp)

    1. ALK — Abello A/S
    2. Jubilant HollisterStier LLC

    Mixed Vespid Venom Protein (mixed yellow jacket, yellow hornet, and white faced hornet)

    1. ALK — Abello A/S
    2. Jubilant HollisterStier LLC

  1. RELATED VIDEO: